Effects of high-frequency stimulation of the nucleus accumbens on the development and expression of ethanol sensitization in mice

Christina N. Nonaa,d, Meaghan C. Creeda,d, Clement Hamanid,e and José N. Nobregaa,b,c,d

The behavioural effects of high-frequency electrical stimulation (HFS) are often similar to the effects of lesions, with the advantage of being reversible. The present study examined the effects of HFS of the nucleus accumbens (NAc), an area that has been shown to be important for sensitization to several psychostimulants, on the development and expression of EtOH sensitization. Male DBA/2 mice received five biweekly injections of EtOH (2.2 g/kg, intraperitoneally) or saline (SAL) immediately before assessments of locomotor activity (LMA). For some of the mice, each EtOH or SAL injection was preceded by 2 h of bilateral NAC HFS, whereas the remaining mice received no stimulation. Seven days after the last injection, LMA was again measured after the mice received a challenge dose of EtOH (1.8 g/kg, intraperitoneally) or SAL, either preceded or not preceded by 2 h of HFS. Mice receiving NAC HFS before EtOH injections during the sensitization period showed progressive increases in LMA that were not different from the LMA scores of EtOH-injected mice which had received no HFS. However, when the latter group was subsequently challenged after receiving HFS, a strong suppression of LMA was observed, in comparison with their own previous LMA scores (~72%) and compared with EtOH-sensitized groups challenged in the absence of HFS (~70%). A separate cohort of mice that were surgically implanted but not stimulated showed a robust EtOH sensitization response that did not differ from that of EtOH-treated mice without electrodes, demonstrating that HFS behavioural effects were not merely a result of the presence of electrodes in the NAc. These results suggest that NAc HFS may have different effects at different stages of the EtOH sensitization process, specifically suppressing expression, but not the development of EtOH sensitization. This pattern of distinct effects of NAc manipulations on different aspects of sensitization is similar to what has been reported for other drugs of abuse, suggesting a commonality of mechanisms. Our findings also suggest that the sensitization may provide a useful paradigm for the investigation of mechanisms of clinical effectiveness of HFS in humans. Behavioural Pharmacology 2015, 26:184–192

Keywords: alcohol, behavioural sensitization, DBA/2 mouse, deep brain stimulation, locomotor activity, nucleus accumbens

Introduction

In laboratory animals, repeated exposure to psychostimulants produces a long-lasting enhancement of locomotor activity (LMA) (Robinson and Berridge, 1993; Stewart and Badiani, 1993; Vanderschuren et al., 2001). This phenomenon, known as behavioural sensitization, is considered to produce various neurobiological changes that have also been implicated in addiction processes (Robinson and Berridge, 2000; Steketee and Kalivas, 2011). Sensitization has been shown to persist for weeks and months after the last drug treatment, and this has led to its classification as a form of pathological experience-dependent plasticity (Robinson and Berridge, 2000; Thomas et al., 2001; Nona et al., 2013). Indeed, sensitizing regimens of psychostimulant administration have been shown to induce changes in synaptic plasticity in brain regions involved in reward (Taepavarapuk et al., 2000; Thomas et al., 2001; Li and Kauer, 2004; Borgland et al., 2006; Abrahao et al., 2013).

Brain processes underlying sensitization are often divided into two temporally distinct phases. The development phase refers to transient neuroadaptations induced by intermittent drug administration, which can then lead to more persistent changes in the subsequent expression phase (Jones and Bonci, 2005). The latter phase occurs after cessation of drug exposure and refers to the long-lasting changes in synaptic function of key neural circuits that mediate the persistent sensitivity to subsequent drug exposure (Vanderschuren and Kalivas, 2000; Jones and Bonci, 2005).

Studies aimed at identifying key neuroanatomical regions involved in the maintenance of sensitization have...
primarily focused on cocaine and amphetamine (AMPH) as inducers. Although sensitization occurs with other drugs of abuse, including ethanol (EtOH), the literature addressing neuroanatomical substrates of EtOH sensitization is lacking in comparison with other drugs. Data from cocaine and AMPH sensitization studies have shown structural and neurophysiological alterations of the mesolimbic dopamine (DA) system (Kalivas et al., 1993; Jones and Bonci, 2005). In particular, such studies have shown that drug-induced synaptic plasticity in the ventral tegmental area (VTA) appears to be critical in the development phase of sensitization, whereas such plasticity in the nucleus accumbens (NAc) is crucial to the expression of sensitization (Pierce and Kalivas, 1997; Wolf, 1998; Everitt and Wolf, 2002; Jones and Bonci, 2005). It is unclear, however, whether this also applies in the case of EtOH sensitization. EtOH sensitization differs from sensitization to other abused drugs in that it occurs in mice, but not as readily in rats; it is more pronounced in the DBA/2 strain compared with other strains, and it occurs only within a narrow dose range (1.5–3.0 g/kg) (Masur and Boerngen, 1980; Phillips et al., 1997; Broadbent et al., 2003; Camarini and Hodge, 2004; Harrison and Nobrega, 2009a; Melón and Boehm, 2011). Given these differences, it is conceivable that neuroanatomical regions critical to the development or expression of EtOH sensitization may be different from those mediating sensitization to cocaine and AMPH.

Recent work from our laboratory has indicated that high-frequency electrical stimulation (HFS) of localized brain areas often produces effects that are similar to those of lesions or tissue inactivation in rodents (Hamani et al., 2010; Creed et al., 2012; Pushparaj et al., 2013), in general agreement with clinical observations. In comparison with other drugs, data from cocaine and AMPH sensitization studies have shown structural and neurophysiological alterations of the mesolimbic dopamine (DA) system in the ventral tegmental area (VTA) appears to be critical in the development phase of sensitization, whereas such plasticity in the nucleus accumbens (NAc) is crucial to the expression of sensitization (Pierce and Kalivas, 1997; Wolf, 1998; Everitt and Wolf, 2002; Jones and Bonci, 2005). It is unclear, however, whether this also applies in the case of EtOH sensitization. EtOH sensitization differs from sensitization to other abused drugs in that it occurs in mice, but not as readily in rats; it is more pronounced in the DBA/2 strain compared with other strains, and it occurs only within a narrow dose range (1.5–3.0 g/kg) (Masur and Boerngen, 1980; Phillips et al., 1997; Broadbent et al., 2003; Camarini and Hodge, 2004; Harrison and Nobrega, 2009a; Melón and Boehm, 2011). Given these differences, it is conceivable that neuroanatomical regions critical to the development or expression of EtOH sensitization may be different from those mediating sensitization to cocaine and AMPH.

Methods

Subjects

Male DBA/2 mice (n = 86), aged 7 weeks at the beginning of the experiment, were obtained from Charles River (Quebec, Canada). Mice were individually housed in polycarbonate cages (32 × 14 × 12 cm) in a room controlled for temperature, humidity (21.1°C, 30% humidity) and photoperiod (12:12; lights on at 7 a.m. and off at 7 p.m.). Food and water were freely available throughout the experiment. All procedures were approved by the Animal Care Committee at the Centre for Addiction and Mental Health and were in keeping with the guidelines and practices outlined by the Canadian Council on Animal Care.

Test apparatus

Measurements of LMA were carried out in 40 × 40 × 35 cm Plexiglas activity monitor chambers (MED Associates, St Albans, Vermont, USA) that automatically detect LMA by horizontal beam breaks. All activity testing was performed between 10:00 and 15:00 h. As in previous work (Harrison and Nobrega, 2009a, 2009b), 15-min sessions were used throughout. This test duration was chosen because the stimulant effects of EtOH are observed within the first 0–15 min of drug administration, after which sedative effects dominate the behavioural profile (Crabbe et al., 1982).

Drugs

Anhydrous ethyl alcohol (Commercial Alcohols, Brampton, Ontario, Canada) was diluted with physiological saline (0.9% NaCl) to a concentration of 15%w/v. Mice received 2.2 g/kg of EtOH intraperitoneally (15 ml/kg) or an equal volume of saline (SAL) during the development phase of the study. For the challenge, mice received 1.8 g/kg (intraperitoneally) of EtOH or an equal volume of SAL. These doses were chosen for the sensitization and challenge phases of the experiment, respectively, because they elicit locomotor stimulant rather than sedative effects in mice (Phillips et al., 1994; Quadros et al., 2002a; Harrison and Nobrega, 2009a).

EtOH sensitization procedure

Following 7 days of acclimatization to the colony room, mice received 3 daily habituation sessions to the test chambers, where LMA was measured in the absence of drug or stimulation. Following habituation sessions, mice were counterbalanced for baseline LMA and subsequently assigned to receive either EtOH (n = 34), SAL (n = 22), HFS before EtOH injections (HFS + EtOH; n = 21) or HFS before SAL injections (HFS + SAL; n = 9) groups. On test days (i.e. injections 1, 3 and 5), mice were transported in their home cages to the test room and allowed to acclimatize for 30 min. They were then injected with EtOH or SAL and LMA was immediately measured for 15 min, after which mice were returned to the colony room. For the HFS + EtOH and HFS + SAL groups, each EtOH or SAL injection was immediately preceded by 2 h of bilateral NAc core HFS, as described below. On days when LMA was not measured (injections 2 and 4), mice were brought to the testing room for 30 min, injected with EtOH or SAL and returned to their cages. The cages were left in the testing room for an additional 15 min before being returned to the colony room.

Challenge experiment

Following a 7-day drug-free period after the completion of the EtOH sensitization protocol, EtOH, SAL, HFS + EtOH and HFS + SAL mice were further assigned to receive either SAL or a challenge dose of EtOH (1.8 g/kg, intraperitoneally) either preceded or not preceded by 2 h of HFS and immediately followed by a 15 min LMA session.
HFS surgery and protocol
Electrode implantation surgery was performed 1 week before the first habituation session for the groups that received HFS during the sensitization phase and 1 week before the challenge session for groups that received HFS only during the challenge phase. Mice were anaesthetized with isoflurane vapour and had stainless-steel, polymide-insulated electrodes (0.125 mm diameter with 0.25 mm of the tip exposed) implanted bilaterally into the NAc core (A–P: +1.4, M–L: 1.3, D–V: −4.7 mm, using the Franklin and Paxinos atlas (Franklin and Paxinos, 1997). A ground electrode was wrapped around a screw implanted over the somatosensory cortex, and the preparation was secured to the skull using 3M/ESPE Keta-cem dental cement (K-Dental, Toronto, Ontario, Canada). Mice that were not receiving electrodes were anaesthetized with isoflurane vapour for the same period of time as those receiving electrode implantations.

At least 5 days after surgery, HFS was applied using a portable stimulator (model 6510; St Jude Medical, Plano, Texas, USA) set to deliver a current of 37.5 μA (biphasic pulses, 90 μs width, 130 Hz frequency). During the HFS sessions, mice were connected to the tether in their home cages and received bilateral stimulation for 2 h before an injection of EtOH or SAL and subsequent placement in the activity monitor chamber. In all cases, HFS was turned off and animals were disconnected from the stimulator before being placed in the activity monitoring boxes.

Blood ethanol concentrations
Immediately after LMA was assessed on the challenge day, mice were killed by cervical dislocation, brains were harvested and trunk blood was collected. Blood samples from EtOH-treated mice were immediately centrifuged and plasma was decanted and stored at −80°C until the time of blood ethanol concentration (BEC) determination. BECs were determined using the BioVision Ethanol Assay Kit (BioVision Inc., Milpitas, California, USA).

Verification of electrode placements
Harvested brains were sectioned coronally (20 μm) on a Leica CM-3000 cryostat (Leica Microsystems, Richmond Hill, Ontario, Canada) microtome at −20°C, thaw-mounted onto Fisher Scientific Positive Charge glass microscope slides (Whirby, Ontario, Canada) and stored at −30°C. Slides were postfixed in 10% formalin vapour, stained with cresyl violet and then examined at ×10 magnification under a Nikon E-600 microscope (Nikon Canada Inc, Mississauga, Ontario, Canada).

Statistical analysis
For the development phase, LMA data were analysed by a mixed-model analysis of variance (ANOVA), with injection day as a repeated-measures factor and drug treatment (EtOH or saline) and HFS (present vs. absent) as two between-subjects factors, followed, where necessary, by Bonferroni’s post-hoc tests. Data for the challenge phase were analysed by a repeated-measures ANOVA using injection 5 versus challenge injection as a within-subjects factor and drug/HFS condition as a between-subjects factor, followed by Bonferroni’s tests for between-group comparisons and paired t-tests for within-group comparisons. All statistical analyses were carried out using SPSS 17.0 software (SPSS Inc., Chicago, Illinois, USA).

Results
Electrode localization
Figure 1 shows all electrode placements in the NAc for animals that received NAc core HFS, or that were implanted with electrodes in the NAc core but did not receive HFS. Only mice with both electrodes correctly placed in the NAc core were included in the data analyses. For the 13 mice receiving HFS during the development phase, 11 had bilateral NAc core placements; of the 18 HFS mice in the challenge experiment, 12 had bilateral NAc core implants.

Effects of HFS on the development of EtOH sensitization
Data for the development and expression of EtOH sensitization and HFS effects are shown in Fig. 2. A repeated-measures ANOVA indicated significant main effects of injection day [$F (2, 102) = 6.90, P < 0.002$] and drug treatment [$F (1, 51) = 47.89, P < 0.001$], but no significant main effect of HFS. The drug treatment × injection day interaction was also significant [$F (2, 102) = 4.03, P < 0.025$], but not the interaction between injection day and HFS or between drug treatment and HFS. The drug treatment × injection day × HFS interaction was also not statistically significant.

As shown in Fig. 2, LMA scores in the EtOH and HFS + EtOH groups were significantly higher than those of SAL controls on injection days 3 and 5 ($P < 0.01$, in both cases). In both EtOH groups, scores on day 5 were also significantly different from each mouse’s own baseline score, further confirming that sensitization had occurred in both groups. LMA scores in the HFS + EtOH group were also significantly higher than those of HFS + SAL mice on injection 1 ($P = 0.001$), injection 3 ($P < 0.01$) and injection 5 ($P < 0.01$). EtOH and HFS + EtOH groups did not differ from one another at any point. Of note, HFS + SAL mice showed a pronounced decrease in LMA after injection 1 compared with the SAL group. This difference just missed statistical significance ($P < 0.059$) in Bonferroni’s-corrected comparisons.

Effects of acute HFS on the expression of EtOH sensitization
The effects of HFS immediately, followed by an acute EtOH challenge are shown in Fig. 2b. To capture the changes in LMA between injection 5 and challenge, a repeated-measures ANOVA was performed using these
two time points as the repeated-measures factor and drug/HFS treatment as a between-subjects factor. The analysis indicated a significant main effect of challenge treatment \(F(6, 35) = 7.07, P<0.001\) and a significant treatment/C2 injection interaction \(F(6, 35) = 4.47, P<0.002\). The group that had received EtOH during development and was challenged with EtOH (the EtOH/EtOH group) showed a 19% increase in LMA. The group that had been administered HFS before EtOH during the development phase and was then challenged with EtOH alone (HFS + EtOH/EtOH) showed a smaller LMA increase (5%). The group that had been administered EtOH alone and was then challenged after HFS (EtOH/HFS + EtOH) showed a 72% decrease in LMA \(P<0.01\). Further, differences between injection 5 and challenge LMA values for the EtOH/HFS + EtOH group were larger than for any other group \(P<0.05\). Challenge LMA scores for this group were also smaller than those in the EtOH/EtOH and HFS + EtOH/EtOH groups \(P<0.05\). The smaller sample sizes in the HFS groups were partly because of loss of electrode caps and postsurgical complications. Health problems in DBA mice after surgical manipulations and consequent removal from experiments have been observed previously (Gremel and Cunningham, 2008).

Effects of electrode implantation

To ascertain whether the effects of NAc HFS could be because of an effect of surgery or the mere presence of electrodes, the experiment was repeated as described above, except that these implanted mice never received stimulation and were therefore designated as Sham controls. The results are shown in Fig. 3. A repeated-measures ANOVA indicated significant main effects of injection day \(F(2, 112) = 22.07, P<0.001\) and drug treatment \(F(1, 56) = 57.25, P<0.001\), but no significant
main effect of electrode implantation. The drug treatment/injection day interaction was also significant \[F(2, 112) = 14.28, P<0.001\]. As shown in Fig. 3, LMA scores of the EtOH group were greater than those of the SAL group on injection days 3 (\(P<0.005\)) and 5 (\(P<0.001\)). The Sham + EtOH group had higher LMA scores than both the SAL and Sham + SAL groups on injection days 3 (\(P<0.001\) in both cases) and 5 (\(P<0.001\) in both cases). The EtOH group also had greater LMA scores than the Sham + SAL group at injection days 3 (\(P<0.005\)) and 5 (\(P<0.001\)). EtOH and Sham + EtOH groups did not differ from one another at any time point.

As in the previous experiment, after a 7-day drug-free period following the EtOH sensitization regimen, the groups were further divided into groups receiving either SAL or a challenge dose of EtOH, with some groups having NAc-implanted electrodes after the 5th injection of the EtOH sensitization protocol. The effects of electrode implantation before the acute EtOH challenge are shown in Fig. 3b. A repeated-measures ANOVA showed a significant main effect of challenge treatment \[F(6, 56) = 9.19, P<0.001\] and treatment × injection interaction \[F(6, 56) = 2.9, P<0.02\]. As can be seen, the presence of electrodes did not affect the sensitization response as all groups reacted normally to the EtOH challenge. In particular, the group receiving EtOH during the development phase and then challenged with EtOH in the presence of implanted electrodes (the EtOH/Sham + EtOH group) showed a 38% increase in LMA (\(P<0.05\)), thus confirming that the observed decrease in the corresponding HFS group in the first experiment was not because of surgery or the mere presence of electrodes in brain tissue.

Blood ethanol concentrations

BEC (in mg of EtOH/ml blood) collected immediately after LMA was assessed on the challenge day for mice receiving EtOH and are shown in Fig. 4. A nonsignificant correlation coefficient (\(r = -0.398; P = 0.1\)) was obtained between challenge LMA and BEC values. Inspection of the scatterplot suggested the presence of a single outlier (circled in Fig. 4). When this single point was removed, the correlation coefficient decreased to 0.054, further confirming that LMA scores in sensitized animals were not dependent on blood EtOH levels.

Discussion

In the present study, HFS applied to the NAc core did not interfere with the development of EtOH sensitization in mice tested immediately after 2h of bilateral stimulation. However, acute HFS appeared to block the
expression of sensitization in mice that had received EtOH and no HFS during the sensitization phase.

Mice that received HFS before EtOH developed sensitized responses that were not different in magnitude from those shown by the group injected in the absence of HFS. By the third injection, scores for both groups had increased by 75 and 57%, respectively, relative to their own baseline scores. By the 5th injection, the increases relative to baseline were 90 and 125%, respectively. These findings strongly suggest that NAc HFS does not affect the development of EtOH sensitization. During the challenge phase, mice that had received only EtOH during the development phase and were challenged with a lower dose of EtOH (the EtOH/EtOH group) showed a 19% increase during the challenge trial relative to their own scores at baseline. In contrast, mice similarly treated during the development phase but challenged with EtOH preceded by HFS (the EtOH/HFS + EtOH group) showed a very pronounced decrease in LMA during the challenge session.

As postsurgical complications have been reported previously for DBA mice (Gremel and Cunningham, 2008), it was important to ensure that the present findings were because of HFS and not the presence of electrodes or lasting postsurgical effects. A control experiment was therefore conducted where mice had electrodes implanted but did not receive any stimulation. Both NAc-implanted mice and mice without electrodes that received EtOH showed similar sensitization development and similar responses to an EtOH challenge, thus suggesting that NAc-implanted electrodes and potential postsurgical effects do not affect the development or the expression of sensitization in mice that had received EtOH and no HFS during the sensitization phase.

Mice that received HFS before EtOH developed sensitized responses that were not different in magnitude from those shown by the group injected in the absence of HFS. By the third injection, scores for both groups had increased by 75 and 57%, respectively, relative to their own baseline scores. By the 5th injection, the increases relative to baseline were 90 and 125%, respectively. These findings strongly suggest that NAc HFS does not affect the development of EtOH sensitization. During the challenge phase, mice that had received only EtOH during the development phase and were challenged with a lower dose of EtOH (the EtOH/EtOH group) showed a 19% increase during the challenge trial relative to their own scores at baseline. In contrast, mice similarly treated during the development phase but challenged with EtOH preceded by HFS (the EtOH/HFS + EtOH group) showed a very pronounced decrease in LMA during the challenge session.

As postsurgical complications have been reported previously for DBA mice (Gremel and Cunningham, 2008), it was important to ensure that the present findings were because of HFS and not the presence of electrodes or lasting postsurgical effects. A control experiment was therefore conducted where mice had electrodes implanted but did not receive any stimulation. Both NAc-implanted mice and mice without electrodes that received EtOH showed similar sensitization development and similar responses to an EtOH challenge, thus suggesting that NAc-implanted electrodes and potential postsurgical effects do not affect the development or the expression of sensitization in mice that had received EtOH and no HFS during the sensitization phase.

Mice that received HFS before EtOH developed sensitized responses that were not different in magnitude from those shown by the group injected in the absence of HFS. By the third injection, scores for both groups had increased by 75 and 57%, respectively, relative to their own baseline scores. By the 5th injection, the increases relative to baseline were 90 and 125%, respectively. These findings strongly suggest that NAc HFS does not affect the development of EtOH sensitization. During the challenge phase, mice that had received only EtOH during the development phase and were challenged with a lower dose of EtOH (the EtOH/EtOH group) showed a 19% increase during the challenge trial relative to their own scores at baseline. In contrast, mice similarly treated during the development phase but challenged with EtOH preceded by HFS (the EtOH/HFS + EtOH group) showed a very pronounced decrease in LMA during the challenge session.

As postsurgical complications have been reported previously for DBA mice (Gremel and Cunningham, 2008), it was important to ensure that the present findings were because of HFS and not the presence of electrodes or lasting postsurgical effects. A control experiment was therefore conducted where mice had electrodes implanted but did not receive any stimulation. Both NAc-implanted mice and mice without electrodes that received EtOH showed similar sensitization development and similar responses to an EtOH challenge, thus suggesting that NAc-implanted electrodes and potential postsurgical effects do not affect the development or the expression of sensitization in mice that had received EtOH and no HFS during the sensitization phase.

Mice that received HFS before EtOH developed sensitized responses that were not different in magnitude from those shown by the group injected in the absence of HFS. By the third injection, scores for both groups had increased by 75 and 57%, respectively, relative to their own baseline scores. By the 5th injection, the increases relative to baseline were 90 and 125%, respectively. These findings strongly suggest that NAc HFS does not affect the development of EtOH sensitization. During the challenge phase, mice that had received only EtOH during the development phase and were challenged with a lower dose of EtOH (the EtOH/EtOH group) showed a 19% increase during the challenge trial relative to their own scores at baseline. In contrast, mice similarly treated during the development phase but challenged with EtOH preceded by HFS (the EtOH/HFS + EtOH group) showed a very pronounced decrease in LMA during the challenge session.

As postsurgical complications have been reported previously for DBA mice (Gremel and Cunningham, 2008), it was important to ensure that the present findings were because of HFS and not the presence of electrodes or lasting postsurgical effects. A control experiment was therefore conducted where mice had electrodes implanted but did not receive any stimulation. Both NAc-implanted mice and mice without electrodes that received EtOH showed similar sensitization development and similar responses to an EtOH challenge, thus suggesting that NAc-implanted electrodes and potential postsurgical effects do not affect the development or the expression of sensitization in mice that had received EtOH and no HFS during the sensitization phase.

Mice that received HFS before EtOH developed sensitized responses that were not different in magnitude from those shown by the group injected in the absence of HFS. By the third injection, scores for both groups had increased by 75 and 57%, respectively, relative to their own baseline scores. By the 5th injection, the increases relative to baseline were 90 and 125%, respectively. These findings strongly suggest that NAc HFS does not affect the development of EtOH sensitization. During the challenge phase, mice that had received only EtOH during the development phase and were challenged with a lower dose of EtOH (the EtOH/EtOH group) showed a 19% increase during the challenge trial relative to their own scores at baseline. In contrast, mice similarly treated during the development phase but challenged with EtOH preceded by HFS (the EtOH/HFS + EtOH group) showed a very pronounced decrease in LMA during the challenge session.
of EtOH sensitization. Nor do they seem to affect LMA in general. Consequently, the results of the present study appear to be because of HFS rather than the presence of electrodes or potential postsurgical effects.

Although these observations suggest that HFS may preferentially reduce the expression of sensitization, other possibilities may be considered. It is conceivable, for example, that HFS, under our conditions, could have induced an overall suppression of LMA. It is noted, for example, that the group treated with HFS + SAL during the development phase had a very low LMA score on injection 1 (although their LMA scores were normal at injections 3 and 5). This could suggest that the HFS effects in the EtOH/HFS + EtOH group might not reflect a block on sensitization expression, but instead a nonspecific effect on overall LMA. Against this possibility, one might note that there were no significant differences between the HFS + EtOH and the EtOH-treated groups for injections 1, 3, and 5. Indeed, the HFS + EtOH group had generally higher LMA scores than all other groups during the development phase. Thus, HFS does not appear to interfere with overall activity when followed by EtOH as the HFS + EtOH-treated group showed the progressive increase in LMA characteristic of psychostimulant sensitization. This indicates that the stimulant effects of EtOH are capable of overriding any potential overall suppression in activity possibly induced by HFS.

It could also be argued that the challenge dose of EtOH (1.8 g/kg), unlike the 2.3 g/kg dose used during the development, may not have been sufficient to override any potential attenuation in activity induced by HFS, resulting in the observed decrease in activity. This suggestion is countered by the observation that in two experiments, SAL-pretreated mice administered the 1.8 g/kg challenge dose of EtOH showed substantial increases in LMA (56 and 61%) compared with their scores for the final SAL injection during the development phase.

The results of the current study suggest that HFS applied to the NAc core may have different effects on the expression and development of sensitization to EtOH. It has been suggested that the development of sensitization is mediated by the VTA, whereas its expression is mediated by the NAc (Pierce and Kalivas, 1997; Wolf, 1998; Everitt and Wolf, 2002; Jones and Bonci, 2005; Brechner et al., 2006). Our findings that stimulation of the NAc core did not affect the development, but appear to block the expression of EtOH sensitization, suggest that the mechanisms mediating EtOH sensitization may be similar to those mediating sensitization to cocaine and AMPH, namely, different roles for the NAc and VTA in the difference phases of sensitization. Future studies could examine the effects of HFS applied to the VTA and the NAc shell to clarify the role played by these structures in the development and expression of sensitization to EtOH.

Our results suggesting an important role of activity within the NAc core in mediating the expression of EtOH sensitization are in line with those of a recent study showing a link between synaptic activity in this region and the expression of EtOH sensitization (Abrahao et al., 2013). EtOH sensitization was found to be associated with NMDA receptor-dependent long-term depression in the NAc core, but not shell, 11–20 days after the last EtOH exposure. This time point is sufficient enough for the neural changes that mediate the expression of EtOH sensitization (Quadros et al., 2002b; Harrison and Nobrega, 2009a; Nona et al., 2013). It is possible to speculate that HFR in the present study may have interfered with synaptic depression, thereby preventing the expression of a sensitized behavioural response (Ikegaya et al., 1995; Urban and Barrionuevo, 1996; Thomas et al., 2001; Brechner et al., 2005; Welsby et al., 2007; Abrahao et al., 2013).

Although the neural mechanisms mediating the behavioural effects of NAc core HFS are unknown, HFS applied to the hippocampus and subthalamic nucleus has been shown to inhibit local neuronal activity and to alter regions distant from the stimulated site (Lian et al., 2003; Filali et al., 2004; Knapp et al., 2009; Creed et al., 2012). It has been shown previously that 30 or 90 min of acute 130 Hz stimulation applied to the NAc alters neuronal activity within the corticostral–thalamic circuit (McCracken and Grace, 2007, 2009). More specifically, NAc HFS was found to reduce neuronal activity within the lateral orbitofrontal cortex and increase fast oscillatory activity within the medial prefrontal cortex (mPFC), the mediodorsal thalamus and the NAc. Interestingly, the orbitofrontal cortex and mPFC, in addition to the NAc, are regions important in addiction and have been shown to play a critical role in sensitization to psychostimulants, suggesting again that the mechanisms mediating EtOH sensitization may be similar to those of other psychostimulants (Vanderschuren and Kalivas, 2000; Jones and Bonci, 2005; Muhammad and Kolb, 2011). With respect to the current study, chronic HFS may have produced its immediate effects on the expression of sensitization by either activating or inactivating not only the NAc core, but other structures communicating with this region. Clearly, elucidating the neural mechanisms by which chronic NAc HFS influences EtOH sensitization is an important avenue to explore in future studies.

Our finding that the expression of EtOH sensitization appears to be blocked by bilateral HFS of the NAc core suggests that stimulating this region may have therapeutic benefit in combating alcoholism. Recently, HFS has been shown to be effective in reducing both the craving for and consumption of alcohol in severe alcoholism, although data are currently available for only a small number of cases (Kuhn et al., 2007, 2011; Heinze et al., 2009).
Our current findings suggest that the sensitization model may provide a useful model for investigating mechanisms and improve the effectiveness of HFS in the treatment of alcoholism.

In summary, the present study found that DBS applied to the NAc core did not interfere with the development of EtOH sensitization in DBA mice, whereas it appeared to block the expression of sensitization in mice where sensitization had been well established. Future work should investigate the effectiveness of HFS applied to other brain areas, the potential effectiveness of unilateral stimulation and the specific brain mechanisms and circuits involved in these effects.

Acknowledgements

The authors thank Roger Raymond for assistance with blood ethanol collection and analyses, and Mustansir Diwan for technical help.

Conflicts of interest

C.H. is a consultant for St Jude Medical. J.N.N. is supported by operating Grant 170079-2009 RGPIN from the National Sciences and Engineering Research Council of Canada (NSERC). C.N.N was the recipient of a Julie Payette Research Scholarship, André Hamer Award and Vanier Canada Graduate Scholarship from NSERC. M.C.C. was the recipient of a Canadian Institutes for Health Research doctoral award. J.N.N. has no conflicts of interest.

References

